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Abstract

The digitalization of physical gestures is a growing field of research. Especially, greet-

ing gestures pose the opportunity for interesting applications. One commonly known

example is the exchange of contact information by just performing a handshake ges-

ture.

Other researchers have examined multiple ways to improve this procedure and propose

various methods. Some of these approaches utilize the motion of the hand to ensure a

directed data transfer. However, during previous research, it was observed that the way

people tense their wrist during a handshake can have a great impact on the performance

of these systems. The goal of this thesis is to explore a different sensor location to find a

system that is less dependent on the wrist tension.

Therefore, this thesis investigates and compares the resemblance of acceleration signals

for wrist and finger mounted sensors in the handshake scenario. During the course of this

examination, a custom hardware setup was developed. It was used to gather a dataset of

90 unique handshakes for further analysis. The results indicate that the sensor located on

the wrist generated signals with greater similarity.
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1 | Introduction

This chapter leads the reader to the research question addressed in this thesis. Section

1.1 introduces the handshake as a greeting gesture and explains its role, usage and con-

text. To explain the motivation behind handshake related research, Section 1.2 discusses

how the properties of this gesture can be utilized for an application. Finally, Section 1.3

highlights the goals and explains the structure of this thesis.

1.1 Shaking hands - a simple greeting gesture

When humans meet face to face, greeting gestures are an essential part of their interaction.

Obviously, there are many non-verbal expressions that frame such an encounter. They

can take different forms depending on the culture, social relationship, gender and other

factors [1][2]. In the western world, one of the most common gestures during a face to face

meeting is the handshake. The following reference should serve as a definition for this

particular gesture and create a common ground for further considerations:

”Handshake — a grasping with the right hand of another’s right hand or a

grasping of right hands by two people often with a slight up and down shake

of the hands usually upon meeting or taking leave as a sign of friendship,

affection, or good wishes or as a mere polite formalty.” [3]

Within this definition, the handshakes can vary in duration, intensity of the movement,

force of the grip and in the frequency of the up and down movement. These differences

are also influenced by the cultural background, a person’s gender, the setting and the oc-

casion of the encounter [4]. Considering that the grip creates a physical coupling, both

parties generate a unique movement based on these circumstances.
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1 Introduction

1.2 Handshakes in the digital age

In a time where technology with all its advantages and disadvantages is intertwining

with almost every part of our lives, commonly used gestures like the handshake be-

come particularly attractive for the deployment of technology. In fact, since the intro-

duction of the smartphone, mobile computing has become an important field of research

and development. With the increasing availability of smartwatches, smartbands, and

other wearables, there is a growing market for applications that make use of these new

devices.

In the context of digitalization, the handshake offers some particularly interesting prop-

erties. Since it is used as a greeting gesture, it represents an initial or conclusive mark

during a face to face meeting. Moreover, the gesture contains a distinct shared motion

sequence that can be measured and digitally processed. In addition, it implies physical

contact and requires the two interacting persons to stand closely together. Hence, the

handshake provides the opportunity to utilize technologies for low proximity or contact-

based data transfer. All these properties can be salvaged to develop interaction-based

applications.

It is a very prominent idea, to use the handshake as a trigger to launch the exchange of

data between mobile devices. This usage scenario is currently patent-protected by Apple

Inc. [5] and has been the motivation for several research projects.

For example, Hickenly [6] investigated the concept of using gestures to trigger the ex-

change of information. He used a synchronous bumping gesture between two displays

to connect both devices and share information between them. Another gesture related

system was presented with the IBand [7]. This wrist-mounted device was built to ex-

change information between two people who perform a handshake gesture. After the

devices detected an up-and-down movement of the equipped hands, the IBands initiated

an infrared data transfer.

When employing the handshake for the exchange of data, one has to face two main chal-

lenges. At first, the gesture has to be tracked and recognized by the system to trigger

the data exchange. After a successful detection, the system has to provide a way of ex-

changing data between the involved parties. Some systems, like the IBand, use a direc-

ted transfer technology to ensure a targeted data exchange between interacting persons.

2



1 Introduction

As the handshake includes physical contact, touch-based transfer technologies offer an

additional way of data exchange. A good example was given by Zimmerman [8]. He

used the conducting property of the human body to transfer data between the interacting

users.

In contrast to the directed approach, broadcast or network based transfer technologies

like Bluetooth and WiFi need an additional differentiator. This supplementary mechan-

ism is crucial to ensure only corresponding parties are taking part in the data exchange.

It is a common approach to salvage the synchronized movement of the gesture to match

corresponding handshakes. For instance, Auguimeri et. al [9] presented a system for in-

teraction based data transfer using body sensor networks. They utilized decision trees to

classify and match acceleration signals that were generated by two persons performing a

common handshake. Still, this system required a pre-existing connection to transfer the

signal data to the partner device.

In contrast, the Shakecast [10] application proposed a solution that uses several features

computed from the acceleration data of a handshake to directly encode a Bluetooth Low

Energy (BLE) data broadcast. Hence, the system did not need to transfer any signal data

to the partner device. Therefore, it works as a peer-to-peer(P2P) solution and does not

need a pre-existing network connection.

1.3 Goal of this thesis

Most of the earlier described acceleration based solutions require a lot of computational

effort. The sensor data is constantly copied, transformed and compared. Therefore other

disambiguation mechanisms seem preferable. Based on this assumption Chapter 2 de-

scribes a simple experiment that was carried out during the exploratory phase of this

thesis. The experiment was conducted to explore Near-Field-Communication(NFC) as a

tool to ensure directed handshake based data exchange.

This thesis can be seen as a followup on the Shakecast application. Therefore, the main

inquisition is based on an observation that was made during the project. It was observed,

that the way testers strained their wrist had a great impact on the acceleration signal. In

some cases, this difference in joint tension even led to unmatchable handshake data. It
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1 Introduction

is assumed that this joint induced disparity also affected the overall performance of the

application.

This thesis investigates this circumstance while searching for a possible solution for the

disparity problem. By moving the sensors to the finger of a user and therefore beyond

his wrist the observed joint-induced disparity should be reduced. Accordingly, this thesis

examines if the corresponding acceleration signals of a finger based system have a higher

resemblance than the signals of a wrist based system.

In order to substantiate the impact of this alternate sensor position Chapter 3 suggests

several features that can be computed from acceleration data. Furthermore, several sim-

ilarity measures are introduced and some challenges of signal matching are discussed.

Chapter 4 presents a custom hardware setup that was developed to create a dataset for

the comparison of two different sensor positions. In Chapter 5, the data acquisition pro-

cess is explained. Additionally, this chapter provides some additional information about

the metrics of the dataset.

Thereafter, Chapter 6 introduces the analysis tool that was developed to compute the

similarity measures. Moreover, it contains the results of the signal similarity analysis for

both sensor locations as well as the concluding comparison. Finally, Chapter 7 discusses

the results of the preceding analysis and highlights important findings. Additionally,

some insights and ideas for future research are presented.
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2 | Exploration of Near Field Communic-

ation (NFC)

This chapter presents some insights from the exploratory phase of this thesis. Section

2.1 starts with a short overview of the Near Field Communication (NFC) technology.

Afterwards, Section 2.2 describes an experiment that was conducted to investigate the

applicability of this technology to the developments of the intended handshake system.

Consequently, Section 2.3 summarizes and evaluates the obtained results of this experi-

ment.

2.1 NFC, a proximity-based transfer technology

Within the last years, NFC became popular as a technology for mobile payment and

is commonly used for digital key cards. The protocol belongs to a subset of the RFID

standard. Therefore, it uses inductive coupling to transfer data between two respective

devices. NFC, in particular, operates in the high frequency band at 13.56 MHz and sup-

ports wireless data transfers with a rate of 424 kbits per second in a range up to 10 cm

[11].

Since the handshake gesture provides a mutual close range space between two persons,

NFC seems to be a viable technology to explore in this context. Considering a trans-

mission range of 10 cm, one can find several mounting points for NFC devices to inter-

act during a handshake. To explore the possible application of NFC in the context of

this gesture, a simple experiment was conducted. The goal was to determine a suitable

mounting location on the hand that would enable a stable data transfer between two NFC

devices.
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2 Exploration of Near Field Communication (NFC)

2.2 Experiment: NFC readings in different scenarios

This experiment was realized with a PN532 NFC RFID modules [12] and the passive NFC

Tag of the NRF52. Both were put in a certain position in relation to the hands of the par-

ticipants. After the positioning, the circumstances of a handshake were simulated, while

the output of the active device was monitored for successful readings. This procedure

was repeated three times. Each time, the position of the NFC devices was changed to an

alternate position.

Figure 2.1: Exemplary sketch of the NFC device locations during the exploration.
The red line represents the approximate positioning of the devices.

As shown in Figure 2.1, the modules were first positioned at the back sides of the par-

ticipants’ right hands. For the second iteration, for one of the devices was positioned

between the hands of the participants. Therefore, the distance between the two NFC

devices was reduced. During the third trial, both NFC devices were placed on the palms

of the participants.

2.3 Evaluation of NFC for handshake based data exchange

During the first two trials, the active module was not able to register any data exchange.

However, in the third scenario, the reading of the data was successful. As a result, it seems

plausible that in the first two cases, the human hand acted as an electromagnetic shield

between the two devices and obstructed the exchange. Only during the last scenario of

the experiment, the inductive coupling was strong enough due to the low distance and

no shielding obstacle.

This bears the implication that at least the antenna of a NFC device would need to be

worn on the inside of the hand if this technology is utilized to trigger gesture-based data

6



2 Exploration of Near Field Communication (NFC)

exchange or even as a transfer technology for application data. Still, it is questionable

whether this is a usable approach in a real-world scenario due to the physical size of an

antenna. Such a device would be a disturbance when performing a handshake if not

fitted in an unobtrusive way. It might be an idea worth pursuing, to fit the hardware

into the form of a common ring. However, it is undetermined if NFC devices that are

wrapped around the fingers would provide enough inductive linkage in a handshake

scenario.

Due to its susceptibility to the electromagnetic shielding of the human body, NFC does

not seem to be a suitable approach to enable handshake based data exchange. However,

when combined with other approaches, RFID or NFC in specific could help to ensure that

corresponding handshakes are matched by enforcing close proximity. Therefore, it is still

valid to explore its application in future research.
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3 | Digitalization of a handshake

After concluding the NFC exploration, the focus of this thesis shifted to the investigation

of an alternative sensor position to acquire acceleration signals of greater resemblance.

Therefore, Section 3.1 begins with a short discussion of different sensor positions. Af-

terwards, Section 3.2 provides a short introduction into the possible measurements of

an inertial sensor and shows several features that can be derived from an acceleration

signal. Section 3.3 describes a number of problems that can arise during the compar-

ison of acceleration data. Afterwards, Section 3.4 explains the similarity criteria, which

can be used for the evaluation. Finally, Section 3.5 demonstrates how the different sim-

ilarity measures are altered by preprocessing steps like smoothing and signal segmenta-

tion.

3.1 Selection of a sensor position

A handshake can be segmented in four phases [13]. First, there is an initial movement to

bring the hands together. It is followed by a short period of unsynchronized movement to

counterbalance the initial movement and the physical contact. In the next phase, the two

interacting persons engage in a synchronized motion. Finally, the gesture is completed

by releasing the hands.

To utilize these phases, especially the one containing the synchronized movement many

approaches employ inertial sensors at the wrists of the interacting persons [10][14]. This

location has two convenient properties. First of all, a wrist mounted sensor is not within

the area of physical contact. Therefore, it does not obstruct the gesture in any way. Second,

it is very common to wear watches or trinkets on the wrist. Especially when thinking

about user-centered consumer applications this is a beneficial quality.

However, as stated during the introduction, measurement data acquired at this posi-

tion is influenced by the way people tense up their wrist joint. By attaching the sensor
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3 Digitalization of a handshake

to the finger, instead of the wrist this effect could be reduced. Based on this assump-

tion, the acceleration data of an inertial sensor worn like an ordinary ring is investig-

ated.

3.2 Measurements

A deployed IMU provides the acceleration value for three axes x, y, and z. These values

are recorded with a certain sample rate. Depending on the internal settings and the built-

in capabilities of a sensor, it can record multiple samples within a second. Consequently,

the sensor output can be interpreted as a time series signal.

Figure 3.1: Plot of the acceleration signals for each axis of the corresponding hand-
shake data. This data was recorded with a wrist-worn sensor at a sample rate of
75Hz. The acceleration is denoted in g*1000.

The raw acceleration data displayed in Figure 3.1 can be compared separately for each

of the axes. Therefore, the raw sensor output provides three basic signals for a similarity

comparison.

9



3 Digitalization of a handshake

3.2.1 Composite signals

By combining the sample values of x, y, and z to a vector and calculating the length of

it, one can obtain an aggregated signal. Consequently, the raw data can be used to create

four composite signals vxyz, vxy, vxz and vyz see 3.2.

Figure 3.2: A plot of four corresponding composite signals. This data was recorded
with a wrist-worn sensor at a sample rate of 75Hz.

3.2.2 Derived signals

Since acceleration is the rate of change of velocity at a specific moment, other physical

values like the velocity or the covered distance can be calculated from it [15, p.9-11]. By

computing these value transformations for the raw data and the composites, 14 additional

comparable features are generated.

10



3 Digitalization of a handshake

Velocity

By integrating over an acceleration signal, an accumulated velocity value for every sample

point can be obtained.

v(n) =
∫ n

i=1
a(n)dn

The accumulated values were calculated with the cumtrapz function of the scipy.integrate1

library.

Figure 3.3: A plot of the accumulated velocity value at each sample point based on
the raw y acceleration. This data was recorded with a wrist-worn sensor at a sample
rate of 75Hz.

1 https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.cumtrapz.html
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3 Digitalization of a handshake

Distance

With an additional integration of the velocity values, it is possible to compute a distance

representation.

s(n) =
∫ n

i=1
v(n)dn

Figure 3.4: A plot of the accumulated distance values at each sample point based on
the raw y acceleration. This data was recorded with a wrist worn sensor at a sample
rate of 75Hz.

3.3 Challenges

During the exploration of several test recordings and the screening of related research,

several basic problems were identified. Each of them influences and sometimes even

aggravates the signal comparison.

12



3 Digitalization of a handshake

3.3.1 Orientation mismatch

As shown in Figure 3.5 in a case of wrist deployed IMU the sensors are aligned. Due

to their almost parallel alignment, the motion is registered on the respective axis of both

sensors. Yet, in the case of a finger worn sensor, the orientation can be shifted. Therefore,

the movement might be registered on a different axis or even be distributed over multiple

axes.

Figure 3.5: Explanatory visualization of the orientation mismatch.

This problem is amplified by the fact that an acceleration sensor is always influenced

by Earth’s gravity. Accordingly, one has to expect a nominal average acceleration value

of 9.80665 m/s2 that affects the different axis measurements depending on the sensor

orientation. If both IMUs are properly aligned or are capable of filtering the influence

of gravity, this effect can be neglected. Otherwise, it will induce a certain difference in

13



3 Digitalization of a handshake

the corresponding raw acceleration signals. However, the composite signal vxyz can be

expected to be indifferent to the orientation mismatch since it is a representation of the

assembled power of all three raw signals.

Besides, there is another circumstance that has to be considered when looking at the

sensor orientations. Figure 3.5 also illustrates that if the sensors are oriented in the same

manner, some axis might oppose each other. Consequently, they will produce inverted

values. To prevent misinterpretation during the analysis the signals have to be prepro-

cessed accordingly.

3.3.2 Time mismatch

Another problem is the time mismatch. When the two measurement units are not driven

by the same clock, their output values can be shifted in time. In fact, this is very likely

to happen in a scenario with independent mobile devices and when using split second

measurement rates.

Figure 3.6: Plot of two corresponding y accelerations. The signals of the sensors are
shifted in time.
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3 Digitalization of a handshake

3.3.3 Selection of a starting point

When comparing handshake motion signals with the intent to make use of their sim-

ilarity, it is crucial to find a cohesive starting point. If the movement is embedded in

a constant data stream, it is common to apply a sliding window approach combined

with a classifier to discover the appointed motion in the signal [14]. Further possible

strategies would be to use simple heuristics like amplitude thresholds or peaks [10]. It

is also possible to deploy additional sensors [16] to detect the start of the synchronized

motion phase.

3.3.4 Selection of a window size

Besides the selection of a starting point, it is important for a comparison to determine the

end of a handshake motion. Handshakes can vary in length, but to avoid the inclusion

of gesture unrelated data it is preferable to select the window size as small as possible.

Melnyk[13] observed an average gesture duration of 2.67 seconds with a standard devi-

ation of 0.86 seconds. In addition to that, Tange[16] and Wang[17] determined, that the

physical contact phase of a handshake ranges somewhere between 0.65 seconds and 2.67

seconds.

3.4 Similarity criteria

To perform a detailed similarity comparison of the corresponding acceleration signals sev-

eral criteria can be considered. An easy way to measure the similarity of two signals is to

compare their amplitudes. Therefore, it is an established approach to calculate the correla-

tion between them. Also, similar signals should display a recurrence of features. To prove

resemblance one can test for several peak based values. Finally, there is the possibility to

compute frequency based comparables from a signal.

15



3 Digitalization of a handshake

3.4.1 Correlation

Usually, it is a straightforward way to express the coherence of two signals by combining

all corresponding sample values.

n

∑
i=1

xi ∗ yi

This generates a number that represents a relation between two signals. It is basically a

value for the joint energy of the two signals. Nevertheless, due to the overall variations

in amplitude of the different motion signals, this basic correlation is hard to compare.

Therefore, it is necessary to create a normalized correlation (NC) by dividing it by a joint

scaling factor.

∑
n
i=1 xi ∗ yi

√

∑
n
i=1 x2

i ∗ ∑
n
i=1 y2

i

NC calculates a coefficient between -1 and 1 to express the relation of two signals. Thereby

1 is implying perfect coherence and -1 standing for inverse correlation. A similar measure

of linear correlation is the pearson correlation (PC) coefficient also referred to as Pear-

son’s r [18]. In principle, it is a normalized correlation but each value is diminished

by the average energy of the signal. Pearson’s r also calculates a value between -1 and

1.

∑
n
i=1 (xi − x) ∗ (yi − y)

√

∑
n
i=1 (xi − x)2 ∗ ∑

n
i=1 (yi − y)2

As stated earlier correlation is based on the combination of time-corresponding sample

values. Therefore it is susceptible to the time mismatch. A common approach in signal

processing is to compute the cross correlation to determine if there is a lag between two

signals. To calculate the cross correlation the signals are deferred stepwise while look-

ing for the maximal correlation value. The total displacement between the position of

the maximum correlation and the initial position is then interpreted as the time delay.

After adjusting the samples of a signal to the lag, both the NC and the PC values can be

considered as comparable features.
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3 Digitalization of a handshake

3.4.2 Points of interest

Further similarity criteria can be computed from the points of interest (POI). A POI can be

a maximum, a minimum or a zero-crossing. As shown in related research [14] handshakes

can be matched by comparing these POIs.

The simplest strategy to compare two signals with POIs would be to look at the peak

counts. Obviously, this feature is very dependent on the peak detector and prone to signal

noise. In fact, the peak count is often inaccurate. If used as a sole comparator it is very

likely to match signals that do not belong together.

Another strategy is to examine if the positions of the detected POIs are aligned on the

sample scale. If the corresponding signals are affected by a time mismatch, this will also

lead to imprecise results. Consequently, for a reliable comparison, it would be necessary

to compensate for an existing lag. If the delay is not too large as shown in Figure 3.7 it is

possible to define an affinity range. Close maxima within that range could be interpreted

as corresponding peaks.

Figure 3.7: Plot of y acceleration maxima for two corresponding users. Before com-
puting the peaks the signals were preprocessed to filter the noise. The total peak
count for both users is 13. A slight delay is visible.

17



3 Digitalization of a handshake

If both signals are based on the same sample rate, we can assume that the acquired accel-

eration signals are not warped in time. As a result, the distances between the POIs can

as well be used as a similarity criterion. Given that the data is not too noisy or properly

filtered, the distances between the peaks should be indifferent to the time delay. By com-

puting the correlation of the distance values the peak distances can be used to express the

similarity of two signals.

As suggested earlier, if the signals contain noise, the output of a peak detector can vary.

Because of that, it is advised to smooth the signal and to filter the results either by threshold-

ing or ranking. For instance, in case of a peak distance comparison based on maxima, it

might be a good idea to only consider the five highest maxima of both signals.

3.4.3 Frequency analysis

It is a common approach to collate two signals by comparing the outputs of their Fast

Fourier transformations (FFT) [19, p. 464 ff.].

Figure 3.8: Frequency histogram for the corresponding y signals of Figure 3.1. The
values were computed with the fft() function of the scipy.fftpack 1library.

As a matter of fact, the correlation between the two FFTs is a good similarity criteria. Some

of the handshake detectors are mainly based on the computation of this value [10]. Plainly,

the FFT expresses a signal with sinusoids of varying frequencies. Hence, the algorithm

1 https://docs.scipy.org/doc/scipy/reference/fftpack.html
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3 Digitalization of a handshake

computes a representation of a signal in the frequency domain and returns a spectrum of

frequencies cf. Figure 3.8.

Melnyk et al. [13] stated that the frequencies of a handshake gesture appear to be situated

within the frequency band from 0 Hz to 10 Hz. They also identified 4.2 Hz as the main fre-

quency that is dominant during the synchronized movement phase of a handshake. These

findings coincide with the data acquired for this thesis.

3.5 Impact of preprocessing

It is possible to partially compensate for the effects of the previously mentioned mis-

matches by preprocessing the data. Hence, the measured similarity between two signals

can be improved. Some of the methods described within this section have been applied

in the later data analysis to improve the signal comparison.

3.5.1 Time shift adjustment

Figure 3.9: Plot of a y signal after applying the time shift adjustment.

By computing the cross-correlation mentioned in Section 3.4.1, the time mismatch can

be determined. Before computing the different similarity criteria the signals have to be

shifted by the delay while trimming or extending the ends of the signal by the shift to

ensure an equal signal length cf. Figure 3.9.
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3 Digitalization of a handshake

3.5.2 Smoothing

To filter the noise from a signal it is common to apply a low-pass filter. A low pass

filter can be applied by convolving a signal with a window of averaged sample val-

ues.

Figure 3.10: Plot of a y signal after convolving it with a seven sample average filter.
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4 | Measuring accelerations of handshakes

With the goal to acquire a dataset for the evaluation of sensor positions, a custom re-

search setup was developed. The setup measured the motion at the wrist and the finger.

It was composed out of two mountable acceleration sensors and a wearable processing

unit. This chapter contains and documents the details of the setup to support replication

and extension. First, Section 4.1 will discuss the hardware and Section 4.2 the deployed

software. Section 4.3 presents the mounting solutions that were used to hold the hard-

ware in place. Finally, Section 3.4 contains some information on the latency and transfer

rates of the setup.

4.1 Hardware

The system was built with of-the-shelf hardware and development boards. For the pur-

pose of further development, all the different components were selected to be built into

a custom printed circuit board (PCB). Each measuring unit consisted out of two sensor

units and one microcontroller with Bluetooth capabilities. To make the process of data ac-

quisition more flexible the system was designed to be portable. Therefore, the controlling

hardware was placed into mountable pockets.

The motion sensor used in this setup was the BNO055 [20]. This Inertial Measurement

Unit (IMU) contains a magnetometer, a gyroscope, and an accelerometer. To lower trans-

mission load and to generate results comparable to previous research, only the acceler-

ation data is recorded and processed. During the course of this thesis, the sensor was

mounted on a breakout board to speed up the process of building the system and to en-

sure easy access to the contact pins of the IMU.

The green and yellow connections in Figure 4.1 show that the BNO055 was connected to

a nRF52 microcontroller via an Inter-Integrated circuit (I2C). This microcontroller fulfilled

the tasks of retrieving and forwarding the acceleration data. It was selected because of

its built-in BLE capabilities. Hence, there was no need for a supplementary BLE unit.
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4 Measuring accelerations of handshakes

Figure 4.1: Circuit layout of the gathering units. Each unit contained two IMUs and
one microcontroller. This graphic was created with fritzing1.

Especially, when considering the development of a custom PCB, this feature would save

some space on a custom board. Although, for this particular gathering setup the nRF52

was still mounted on the development board to speed up re-programming and to have

easy access to the necessary pins.

During each recording session, the data was transferred by the nRF52 to a respective

Android smartphone via BLE. The phone model used for the data acquisition was the

Nexus 52 running Android 6.0.1. To improve the transmission rate, each gathering unit

was coupled with another identical Android device.

1 http://fritzing.org/download/
2 https://support.google.com/nexus/answer/6102470?hl=en
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4 Measuring accelerations of handshakes

The mobile measurement units were powered by 52540 lithium batteries. This rechargeable

battery has a capacity of 680 mAh and an output voltage of 3.7 V. This power source was

sufficient to supply the setup for several days with multiple recordings.

4.2 Software

As mentioned in the previous section, the setup is based on two different processing units.

The programs for the nRF52 were developed in C utilizing the nRF52 SDK v12.2.0, while

the corresponding Android application was programmed in Java. Figure 4.2 shows the

different modules that were built for this setup. Additionally, it displays the involved

drivers and interfaces.

Figure 4.2: Overview of the deployed modules and the basic software structure.

The communication between the microcontroller and the IMU was accomplished via an

I2C bus. Nordic, the manufacturer of the nRF52, supports the I2C standard with a custom

driver. Within their documentation, it is referenced as a two-wire interface (TWI). The

TWI provides several functions to initiate the connection or to manage the data transfer.

These functions were called upon in the IMU module. It maintained the bus connection

and surveyed the accelerometer data from the BNO055.

Another program that ran on the microcontroller is the BLE module. It fulfilled the task

of handling the connection between the nRF52 and the Android device. Almost all of the

Bluetooth capabilities of the nRF52 can be accessed via the so called Softdevice. The Soft-

device contains a driver for the BLE capabilities of the microcontroller and provides an
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4 Measuring accelerations of handshakes

interface to access the functions compliant with the Bluetooth standard. To simplify fur-

ther development, the sensor data was stored in a Generic Attribute Profile (GATT). This

concept is used within the BLE standard to streamline the way data is structured and sent

back and forth. GATT organizes data in Services and Characteristics, which can be ac-

cessed after a connection is established between two BLE devices. Also, according to the

BLE standard, the nRF52 was set to work as a peripheral device.

To facilitate the process of data gathering, the smartphone was designated to work as a

central device. Therefore, the application had built-in functions to scan for BLE support-

ing sensor modules and to initiate and maintain a BLE connection. Within Android, most

of the BLE traffic was administered through an event interface. Furthermore, the applic-

ation had the functionality to start a timed recording session by the press of a button.

Additionally, it displayed a plot of the received data and stored it in the Download folder

of the Android device. All of these functions were accessible through a basic graphical

interface in the app.

4.3 Mounting

When considering mounting solutions, the first requirement was to have a size-adjustable

setup that fits participants with different physiological properties. Additionally, the pro-

cess of gearing up should not be complicated and not take too much time. Finally, the

gathering setup should be mobile since it was supposed to be deployable outside of a

laboratory.

To match these requirements, the development board and the power supply were stowed

in a small bag. This kind of bag is usually used to carry a smartphone during sports and

outdoor activities. Hence, it could easily be mounted on the arm of a participant with

an attached velcro band. As displayed in Figure 4.3, it was always wrapped around the

upper arm of a person.
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4 Measuring accelerations of handshakes

Figure 4.3: Photograph of a handshake with both participants wearing the data gathering gear.

At this position, the bag was less disturbing for the wearer and its influence on the move-

ment during a handshake was reduced. Furthermore, the wrist sensor was glued to an ad-

justable wristband that normally works as a holder for the MIBand 1 hardware. The finger

sensor was fixed to a cable tie loop that could be fastened and loosen.

4.4 BLE transfer and sample rate

The BNO055 supports sampling rates up to 1000 Hz. In this setup, the IMU was set to

operate at a rate of 125 Hz instead of the default 62.5 Hz [20]. This frequency was selected

because it was closest to the sample rate of 100 Hz which was used during the Shakecast

project [10]. To ensure seamless data throughput to the microcontroller, the I2C bus was

configured to run at the highest possible frequency of 400 kHz. The BLE settings of the

nRF52 were left at the default values of the SDK examples. To reduce the BLE traffic,

the GATT characteristic was set up to use BLE notifications. Since notifications do not

1 http://www.mi.com/en/miband/
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4 Measuring accelerations of handshakes

need to be acknowledged they are more suitable to ensure a steady data stream from the

peripheral to the central device.

Based on the specifications, BLE [21] is supposed to provide enough throughput to trans-

fer the measures provided by the IMU. In Android 6.0.1 the Bluetooth stack is set to work

at a minimal connection interval of 11.25 ms. Additionally, the transferred data fitted in

the 20 byte payload of one BLE package, while leaving 6 bytes unused. Also, the system

was set to establish a new connection to the peripheral device each time the recording

was triggered manually. Consequently, each recording had a connecting period in the

beginning where no acceleration data was transferred.

However, during development the best sample rates that could be achieved with the

Nexus 5 ranged around 70 Hz. In detail, this means that during a recording period of 6

seconds 420 acceleration values were registered on the Android device. In comparison,

when testing the system with a OnePlus 21 sampling rates around 133 Hz were obtained.

It is likely that the reason for this gap is the difference in the supported Bluetooth stand-

ards. The Nexus 5 supports the older Bluetooth 4.0 while the OnePlus 2 supports the

newer Bluetooth 4.1 standard. Although, it was not determined which part or setting

within the Bluetooth stack caused this discrepancy. To provide comparable rates for dif-

ferent devices an update timer was built into the BLE characteristic of the nRF52 and set

to 10 ms.

Overall the gathering setup worked with an average sampling rate of 66,43 Hz. This value

was computed by averaging the sample rates of 90 datasets that were recorded during the

data acquisition described in Chapter 4. In order to map the movements of a handshake

this sampling rate was sufficient.

1 https://oneplus.net/de/2/specs
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5 | Acquisition process and the dataset

The previously described hardware was used to gather two distinct datasets. Since the

system was designed to be mobile, some of the recording sessions were conducted outside

of a laboratory environment. Each session followed a predefined procedure which is

described in Section 5.1. The following Section 5.2 describes the metrics and properties of

the two recorded dataset.

5.1 Data gathering procedure

To gather a comparable dataset a sequence plan was developed and used during the ac-

quisition of each dataset. A recording session took between 7 and 15 minutes. It started

with a short introduction about the reasons and ideas behind this thesis and the purpose

of the participants data being collected. In the next phase, the sensors and the transmitter

were mounted to the right arms of both participants. While informing the participant’s

about the procedure and reminding them to refrain from exaggerated gestures, the power

was switched on and a short connection test was executed. When the test was successful

both participants were positioned facing each other.

After the introduction, the experimenter started both recordings by pressing a button on

the coupled smartphones while verbally signaling the participants to start the gesture.

After six seconds the recording was automatically terminated and the experimenter re-

viewed the signal plots on each phone. In case a plot was indicating a sensor or transmis-

sion failure an additional iteration of the recording sequence was performed. This proced-

ure was repeated till five to seven gestures were recorded.

To complete the session every attendee had to fill out a data release form and received a

small symbolic reward for the participation.

During the whole gathering process three mentionable observations were made:
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5 Acquisition process and the dataset

a) Many participants started to smile during the recording and expressed bashfulness in their

body language.

b) Some participants mentioned that they touched the acceleration sensor on the finger of their

partner during the handshake.

c) In three cases a participant told the experimenter, that the finger mount had loosened during

the gesture.

5.2 Dataset structure and metrics

The dataset includes a total of 90 handshakes. During the acquisition process, 60 people

participated in pairs. Hence, the set consists of 30 unique pairings. This structure was

selected to diminish the possibility that dominant shakers would influence the dataset

more than others and to create unique handshakes. To reduce the influence of outliers

within a recording session, each pairing contributed three selected handshakes. The

other recordings were discarded. Therefore the dataset contains a total of 90 handshake

samples. Each sample consists of four recordings containing the data of the four respect-

ive sensors. The majority of the participants were acquired in a university environment.

Since the participants were not surveyed there is no verified demographic information

available.

The data was structured in serially numbered folders. The parent folder represents the

pairing and contains subfolders, named ”user1” and ”user2”. Within these subfolders the

acceleration data was stored in comma-separated value (CSV) files. All files that contain

a ”A” in their filename belong to a sensor located on the wrist of a participant while all

files labeled with a ”B” hold data from a finger sensor.

When evaluating the dataset an average of 398.38 datapoints per sensor file was calcu-

lated. The lowest point count is 338 and the highest 422. This difference is probably

based on packaged loss of the BLE connection.
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6 | Data analysis and evaluation of sensor

locations

To conduct a thorough examination of the dataset a custom tool was developed. This

program as described in Section 6.1 was used to compute the similarity measures and

to aggregate the results. In Section 6.2 the different similarity tests are evaluated. Addi-

tionally, a representative similarity test is selected for the final comparison of the sensor

locations. Subsequently, the analysis of the selected similarity criteria is done in Section

6.3. It also holds the concluding results of this comparison and discusses the observations

in the context of other valid similarity tests.

6.1 Analysis tool

The analysis program was developed in Python. This programming language was selec-

ted due to its extensive data evaluation libraries. Accordingly, the developed tool was

used to calculate multiple similarity measures from the corresponding finger and wrist

sensors. These measures were computed by matching wrist data to wrist data and finger

data to finger data.

6.1.1 Program structure

The tool was structured in the main module, the comparator and the generator. When the

tool was started, the main module initiated the loader and administered the signal com-

parisons. Furthermore, it managed the generation of the statistical evaluations. After a

call from the main module, the loader script parsed the data from the CSV files of the data-

set into a simple object based data structure cf. Figure 6.1.

Afterwards, the data for the corresponding sensor pairs was forwarded into the com-

parator. This class returned a matrix with the results of the conducted similarity tests.
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6 Data analysis and evaluation of sensor locations

Figure 6.1: Information processing queue in the analysis tool.

The output matrices were combined to a three dimensional array to create a representa-

tion for the complete dataset. Finally, this new array was used to compute the aggreg-

ated metrics for example the mean or the median correlation values for every similarity

tests.
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6.1.2 Similarity tests

Based on the correlation coefficients discussed in Section 3.4.1 a series of comparative

functions were implemented into the comparator module. All of them were applied

to the different raw and composite acceleration signals. Additionally, the module con-

tains two functions to compute a similarity test for the derived velocity and distance

values.

• The normalized correlation was computed with the formula described in Section

3.4.1. The acceleration signals were preprocessed with a timeshift adjustment based

on the cross-correlation of vxyz. This adjustment was capped at 50 samples.

• The Pearson’s correlation was computed with the formula described in Section

3.4.1. The acceleration signals were preprocessed with a timeshift adjustment based

on the cross-correlation of vxyz. This adjustment was capped at 50 samples.

• The peak distance Pearson’s correlation (maxima) was computed by calculating

the Pearson’s correlation of the distances between the maxima of two signals. To

filter the noise and improve the peak detection the signals were preprocessed with

an averaged convolution. The peak detection was done with a detect peaks() function

ported from matlab.

• The peak distance Pearson’s correlation (minima) was computed by calculating

the Pearson’s correlation of the distances between the minima of two signals. To

filter the noise and improve the peak detection the signals were preprocessed with

an averaged convolution. The peak detection was done with a detect peaks() function

ported from matlab.

• The FFT Pearson’s correlation is based on a Pearson’s correlation of the FFT values

in a range from 2 samples to 35 samples. The FFT was computed with the fft()

function of the scipy.fftpack library.

• The velocity Pearson’s correlation is based on a Pearson’s correlation between the

derived velocity values cf. Section 3.2.. The signal was preprocessed with a timeshift

adjustment based on the cross-correlation of vxyz. This adjustment was capped

at 50 samples. The correlation value was computed with a Pearson’s correlation

coefficient.
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• The distance Pearson’s correlation is based on a Pearson’s correlation between the

derived distance values cf. Section 3.2. The signal was preprocessed with a timeshift

adjustment based on the cross-correlation of vxyz. This adjustment was capped

at 50 samples. The correlation value was computed with a Pearson’s correlation

coefficient.

A table with the aggregated results of these different comparisons can be found in the

appendix.

6.2 Evaluation and selection of comparative tests

All of the aforementioned similarity tests were supposed to be consulted in the final ana-

lysis. The tests were evaluated by reviewing the range, the median and the mean of the

correlation values. Each of these aggregated metrics was computed for every raw (x,y,z)

signal and every composite (vxyz,vxy,vxz,vyz) signal. Furthermore, the maximal and the

minimal correlation value of the aggregated comparisons were examined. Additionally,

plots of the correlation distributions were reviewed.

In order to have a point of reference, a control set was generated from the dataset. In

this set, the correlations were computed with non-corresponding motion signals. By pair-

ing each hand object with partners from different recordings a new list of mismatched

handshakes was created. Since every object was combined with all possible not matching

partners. Based on a set of 90 matched handshakes, the generated control set reached a

size of 8010 falsely matched handshakes. The aggregated metrics for each sensor location

can be reviewed in the appendix A.1 and A.2.

6.2.1 Disqualified similarity tests

While looking at the metrics it became obvious, that the peak based similarity tests for

minima and maxima did not return very reliable values for a comparison. In general, they

produced correlation values in a range from 0.1 to 1 with a median and a mean correlation

value around 0.7. However, the tests returned only slightly lower values for the control

set. The difference between the mean and median correlation values of the data set and
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the control set was below 0.1. In comparison, the differences for the other tests ranged

around 0.2 or even 0.3 depending on the compared signal.

This indicates, that the peak detection in its current form needs some further adjustments

for the peak distances to work as a good similarity measure. This test relies heavily on

the detectors ability to find and return the same peaks in the compared signals. Another

factor that might have an impact on the results is the sample rate of the signals. Given a set

of handshakes with a fast up and down movement and a low sample rate, the computa-

tion of the peak distances will only return values in a small range. Hence, it is more likely

that they will return similar peak distances. This might be the reason for the high correl-

ation values of the control set. Consequently, it disqualifies the applied peak distances as

a convincing similarity test. It is also debatable if Pearson’s R is the right similarity coeffi-

cient when the peak distances turn out to be very similar.

A similar lack of variety was observed for the distance correlation test. The test returned

an average mean and median correlation of around 0.97. This was observed for the

set of truly matching handshakes as well as for the mismatched set. Again the differ-

ence in mean and median correlation between the two sets was below 0.1 for all com-

pared signals. Undoubtedly, these control set values disqualify the distance correlation

as a similarity measure to compare the sensor locations. Yet, they also suggest that the

overall distance a hand moves during a handshake is similar for all the recorded hand-

shakes.

Finally, the normalized correlation suffered from the same problem. The difference in

mean and median correlation between the dataset and the control set was below 0.1 for all

signals except for the y signal. Accordingly, this is shows that the normalized correlation

does not perform very well when comparing the signal data of a handshake.

6.2.2 Selection of comparable similarity tests

The remaining three similarity tests produced rather equal results. During the compar-

ison with the control set their mean and median values deviated in average by 0.22.

When reviewing the aggregated metrics of each of the three tests, it was not possible

to determine if one of them performed better than the other. Therefore, the FFT Pear-

son’s correlation (FFTPC), the velocity Pearson’s correlation (VPC) and the Pearson’s cor-
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relation coefficient (PCC) are considered valid similarity tests for the following evalu-

ation.

6.3 Signalwise comparison of sensor locations

The main evaluation of the sensor location was conducted with the results of the FFT

based similarity test. This test was selected because its closer tie to the previous re-

search of the Shakecast project. However, the following statistical tests were computed

for each of the three selected similarity tests. Accordingly, the results can be reviewed

in the appendix A.3 and A.4. To avoid repetitive argumentation during the signal ana-

lysis only deviations between the tests will be discussed for each signal. Afterwards, a

short performance comparison of the two sensor location is conducted with the test res-

ults.

6.3.1 Evaluation approach and applied statistical methods

As stated earlier the similarity tests provided a correlation value for every handshake of

the dataset. Therefore, each similarity test returned a set of 90 varying correlation values.

These value distributions were compared for the finger and the wrist sensor to ascertain

which sensor location provided a signal of better resemblance.

The applied statistical procedures and methods were selected from Andy Field’s textbook

about statistics [22]. The actual statistical tests were computed with a python program

utilizing the respective statistical functions form the scipy.stats library [23].

At first, the correlation distributions were analyzed for normality with the Shapiro-Wilk

test [24]. This test can be used to examine if the values of a distribution are normally

distributed. The confidence interval for this test was set to an α = 0.05.
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Shapiro-Wilk test:

H0: One sample is drawn from a normally-distributed population.

H1: One sample is not drawn from a normally-distributed populations.

Nevertheless, for uncertain p-values the QQ-plots of the compared distributions were

consulted. Afterwards, a second statistical test was conducted to check if the distribu-

tions were significantly different. In the case of a non-normal distribution, the Wilcoxon

signed-rank test [25] is a useful tool to provide further information about two dependent

distributions. Whereas, if the data turned out to be normally distributed a paired t-test

can be applied. Both these tests are used to determine if there is a significant difference

between the two sensor locations.

Wilcoxon signed-rank and paired t-test:

H0: There is no difference between the correlation values of the two sensor

locations.

H1: There is a difference between the correlation values of the two sensor

locations.

However, especially the Wilcoxon signed-rank test only reveals the existence or the ab-

sence of a significant difference between two value distributions. Besides, it should be

noted, that the Wilcoxon test function from the scipy.stats library only returns the smal-

ler one of both w-statistics and the computed p-value. To provide comparable statistical

results, the z-score and the effect size r were computed with formulas derived from Andy

Field’s book [22, p227-237]. Both values can be computed with sample size dependent

standard error σ.

σw =

√

N ∗ (N + 1) ∗ (2 ∗ N + 1)

24

z =
W − W

σw
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r = z/
√

N

With N=90 being the number of sample values a σw ≈ 248, 52 and a W ≈ 2047, 5 were

computed. These values were used to compute the z-score and the effect size for the

smaller w-statistic returned by the Wilcoxon signed-rank test. Obviously, without know-

ing which sensor is represented by this w-statistic, the effect size can only be used to

inform about the magnitude of the effect, not the direction. Therefore, in the case of a

non-normal distribution the median difference and the computed effect size were consul-

ted to provide a statement about the performance of a sensor location. The effect sizes r

of the Wilcoxon signed-rank tests were rated according to Cohen’s r increments 0.1, 0.3

and 0.5 [26].

With H0 and H1 as an underlying hypothesis for the paired t-test and the Wilcoxon signed-

rank test, the confidence interval α was set to 0.05. This leaves a 5% chance that the stat-

istical tests detects a significant difference if there is none.

6.3.2 x, y, z signals

At first, correlation values of the FFT were tested against a normal distribution with the

Shapiro-Wilk test. For the raw x-axis acceleration signal the test returned a p-value of

0,057591 for the finger sensor and a p-value of 0,471413 for the wrist sensor. Based on

the α = 0.05 assumption it can be conducted that both datasets are normally distributed.

However, since the p-value of the finger sensor was rather close to the threshold, the

QQ-plots of both distributions were consulted.

As displayed in Figure 6.2, the correlation distributions deviate from the normal distribu-

tion and show a slight skew. For this reason, the normality assumption was neglected and

the non-parametric Wilcoxon signed-rank test was applied.

Wilcoxon signed-rank test based on FFT correlation values (x-axis):

w-statistic = 1653, p-value = 0,11243

z-score(wmin) = -1,58740, r(wmin) = -0,16733

Median f − Medianw = -0,16267
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Figure 6.2: QQ-plot of the finger and the wrist based FFT correlation distributions.

As displayed above the test returned a p-value of 0,11243. Unquestionably, this value

is higher than the selected α. Accordingly, H0 can not be rejected and no significant dif-

ference between both distributions were detected. However, an effect size r of -0,16733

indicates a small effect when compared to Cohen’s increments. This suggests that there

might be an effect that can not be proven with the current number of samples. By review-

ing the results of the Shapiro-Wilk test for the PCC and the VPC values, the distribution

determined as non-normal for both of them. Consequently, the Wilcoxon signed-rank test

was applied. In contrast to the FFTPC, their distributions were significantly different. Fur-

thermore, large effect-sizes above 0.5 were computed. The median difference between the

wrist correlation values and the finger based correlation values showed, that the sensor on

the wrist produced acceleration values of higher similarity.

The next FFTPC values, were computed with the y-axis acceleration. This time, the

Shapiro-Wilk test returned a p-value smaller than 0.001 for the finger and the wrist data.

Hence, it was below the α threshold. Consequently, the correlation values were not nor-

mally distributed and the Wilcoxon signed-rank test was used to compare the sensor

locations.

Wilcoxon signed-rank test based on FFT correlation values (y-axis):
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w-statistic = 558, p-value = 0,00001

z-score(wmin) = -5,99348, r(wmin) = -0,63177

Median f − Medianw = -0,32131

With a p-value below the α of 0.05 H0 can be rejected. Hence, the Wilcoxon signed-rank

test indicates that there is a significant difference between the wrist and the finger FFTPC

values. An effect-size of r = -0,63177 arguments for large effect of the location on these

values. Besides the median difference of -0,32131 is a strong indicator, that the wrist

signals had a greater resemblance than the finger signals. This result was matched by the

other two similarity tests. They also returned large effect sizes and a better performance

of the wrist sensor.

The FFTPC was also applied on the z-axis data. This time the Shapiro-Wilk test returned

a p-value = 0,00001 for the finger based distribution and a p-value = 0,25551 for the wrist

based distribution. In contrast to the wrist correlation values the finger correlation values

were not normally distributed. Therefore the paired t-test was not applicable and the

non-parametric Wilcoxon signed-rank test was used.

Wilcoxon signed-rank test based on FFT correlation values (z-axis):

w-statistic = 1180, p-value = 0,00048

z-score(wmin) = -3,49066, r(wmin) = -0,36795

Median f − Medianw = 0,14193

A p-value of 0,00048 indicates a significant difference between the two distributions and

allows a rejection of H0. Although, this time the median difference states that the finger

correlation values have a greater resemblance than the wrist based values. With an effect

size above the 0.3 increment a difference of medium magnitude is indicated. Hence, it

can be deduced that the sensor located on the finger performed significantly better than

the wrist located sensor on the z-axis data. Since not normally distributed, once again the

PCC and the VPC test values were examined with the Wilcoxon signed-rank test. Their

median difference aligns, with the bias towards the finger based sensor values. However,

the test only returned a p-value of 0,173192 for the VPC. This value is above the α of 0.05.

Therefore, for the velocity based distributions, H0 could not be rejected and no significant

difference can be assumed. In comparison to the PCC distribution it also only displayed

a small effect with an effect size of -0,14357.
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6.3.3 vxyz and other composites

According to the procedure for the raw acceleration signals, the composites were also

used for a statistical evaluation. The first test was done with the vxyz signal. When

examined with the Shapiro-Wilk test the FFTPC distributions returned a p-value below

0.00001. Again, this allowed the assumption of a non-normal distribution in both cases.

Wilcoxon signed-rank test based on FFT correlation values (vxyz):

w-statistic = 1812, p-value = 0,34334

z-score(wmin) = -0,94761, r(wmin) = -0,09989

Median f − Medianw = -0,09546

However, the FFTPC produced a p-value of 0,34334 in the Wilcoxon signed-rank test.

Because of that, H0 could not be rejected and no significant difference between the two

distributions was presumed. Another observation that coincides with this result is the

small median difference. Furthermore, an effect-size below the 0.1 increment suggests

that no conclusions can be drawn from this correlation distribution. The PCC and the VPC

distributions were although examined with the Wilcoxon signed-rank test. Although,

their p-values indicated a significant difference between the wrist and the finger based

sensor data. In fact, their median difference of 0,04803 for the Pearson correlation test and

0,02009 for the velocity correlation test imply a better performance of the sensor located

at the finger. Admittedly, the median differences were relatively small. However, this

assumption is strengthened by a medium effect-size. In fact, the low median differences

were observed with most tests for z-axis related composites.

Especially for the FFTPC values of the vxz composite. Again, the distributions of the

FFTPC were found non-normal with the acquainted test and analysed with the Wilcoxon

signed-rank test.

Wilcoxon signed-rank test based on FFT correlation values (vxz):

w-statistic = 1206, p-value = 0,00071

z-score(wmin) = -3,38605, r(wmin) = -0,35692

Median f − Medianw = -0,00945
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The test returned a medium effect size and a p-value below the selected confidence inter-

val. Therefore, a significant difference can be assumed. The VPC distributions showed a

significant difference between the finger and the wrist data for vxz. Whereas, this time no

difference was detectable between the PCC distributions.

Another z axis related composite is the vyz signal. Again, the Shapiro-Wilk test imputed

a non-normal distribution. Accordingly, the FFTPC distributions were analysed with the

Wilcoxon signed-rank test.

Wilcoxon signed-rank test based on FFT correlation values (vyz):

w-statistic = 1853, p-value = 0,43386

z-score(wmin) = -0,78263, r(wmin) = -0,08250

Median f − Medianw = 0,02691

With a p-value ¿ α the null hypothesis was not rejected. Consequently, no significant

difference was detected between the distributions of the wrist and finger derived val-

ues of the FFTPC. In contrast, the Wilcoxon signed-rank test returned different results

for the PCC based similarity test. The VPC test distribution also provided different

results. Both similarity tests indicated a significantly better performance of the wrist

sensor.

Finally, the vxy composite was examined. When computing the Shapiro-Wilk test for the

FFTPC distributions, the test returned a p-value below 0.00. Therefore, the FFTPC values

were also not normally distributed.

Wilcoxon signed-rank test based on FFT correlation values (vxy):

w-statistic = 1085, p-value = 0,00011

z-score(wmin) = -3,87293, r(wmin) = -0,40824

Median f − Medianw = -0,09546

Once again, with a p-value of 0,00011, the Wilcoxon signed-rank test attested a significant

difference between the wrist and the finger sensor. The median difference indicated a

greater resemblance for the wrist sensor derived values compared to the finger sensor

based values. Furthermore, an effect size between the 0.3 and 0.5 increment states that
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the sensor location has large effect on the correlation distribution. Similar results were

observed for the other two similarity tests.

6.3.4 Summary and discussion

As shown in Figure 6.3 the wrist based sensor seemed to provide overall higher correl-

ation values for the acquired dataset. In 12 out of 16 significant similarity distribution

comparisons it provided higher median values. All the significant distribution tests dis-

played a medium or large effect based on their computed r values. Therefore it can be

concluded, that during the course of the conducted user study the sensor located on the

wrist of a participant provided more similar signal values than the sensor located on the

finger.

Figure 6.3: Median values colored by statistical significance. Higher median values
are highlighted in green. The tests results with an effect size below r=0.01 were also
marked as not significant.

In detail, the finger based sensor only returned higher median correlation values for the

z-axis signal and performed less good on the x and y related signals. This result can be

aligned with the concept of wrist induced signal disparity. Especially, when it is con-

sidered that the wrist can move and fold more easily along x-axis than along the y- and z-

axis. It even might be an indicator for a stronger coupling of the finger located sensors. Al-

though, the overall results of the conducted study suggest differently.

Further interesting observations were made when comparing the performance of the se-

lected similarity tests. While returning robust test values on y related signals the FFTP-

CWW based similarity test did not provide significantly different correlations on x and

z related signals. This lack of performance might be linked to the sample rate. As a

frequency based test the FFT relies heavily on a sufficient sample rate to measure fast
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movements. While the amplitude of the movement along the y-axis is rather distinct the

movement in the other two directions is smaller and faster. Admittedly, this assumption

is rather speculative but it might be an idea to follow upon.

Besides, the velocity derived similarity test worked very well with most signals. It re-

turned high overall correlation values and large effect sizes. A possible reason for this

performance could be the integration step. Since, the applied integration function is an

approximation it can be considered an additional preprocessing step that smoothes the

signal and filters noise.

A final remark has to be made about the performance of different signals. When looking

at the correlation values and the test performance the y, x and vxy signals stood out. This

is obviously connected to the earlier stated fact that the up and down motion along the y-

axis is more distinct than the movement on the other two axes. Furthermore, this observa-

tion is congruent with the findings of the Shakecast project.
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The utilization of a greeting gesture as a trigger to exchange digital information can be a

very useful tool. Yet, especially in an scenario where personal information is transferred

it is very important to ensure a directed exchange between the concerned parties. The

goal of this thesis was to explore an alternate sensor position to improve the performance

of directed gesture triggered data exchange. The research was based on the assumption

that in the case of a handshake, the tension in the wrist joint has a great impact on the

resemblance of the measured acceleration signals. Therefore two sensor locations were

compared with several features and similarity measures.

However, the results of the derived comparisons between the wrist sensor and the fin-

ger sensor suggested that wrist induced disparity does not have a big influence on the

similarity of corresponding acceleration signals. There are some possible reasons for this

result. First, based on the observations during the conducted user study it is a possibility

that the unnatural situation of a wired arm and a instructed handshake influenced the

performance of the participants. Second, as reported during three of the recording ses-

sions the finger mount loosened sometimes. Obviously, a loose mount would diminish

the similarity of the acceleration signals. Finally, it was stated several times time that the

user touched the sensor of his partner while performing the handshake. Even though all

these reasons might only hold true for a part of the recordings, they suggest that there

is still room for the possibility that sensor on the finger can perform better than a wrist

based sensor.

Accordingly, it would be a good start for future research to move from a wired proto-

type to an actual ring formed sensor that is less obtrusive and can be used in day to day

live. This would also bear the possibility to further explore the use of low range tech-

nologies. Most of the deployed hardware was selected to later be installed on a PCB.

Therefore, the hardware setup that was developed for this thesis could provide a good

starting point. It might also be interesting to examine the three similarity measures and

thoroughly test them on their overall performance. Finally, another interesting approach

would be to explore the results of an improved version of this setup for a dataset that
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contains solely handshakes recorded with a low wrist tension. Certainly, gesture based

applications still provide plenty of interesting topics that to be investigated in the fu-

ture.
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A.1 Similarity test metrics - finger sensor

08 = natad lortnoc ,regniF09 = natad lamron ,regniFtset deilppA 10 Differences: Finger, normal - control

x

mean median minimum maximum range mean median minimum maximum range mean median minimum maximum range

Normalized correla�on 0,81281 0,84323 0,46614 0,97132 0,50518 0,772065 0,79271 0,217098 0,971974 0,754876 0,04075 0,05052 0,24904 -0,00066 -0,24970

Pearson correla�on 0,35494 0,37511 -0,20179 0,81036 1,01215 0,205274 0,196171 -0,545525 0,833509 1,379034 0,14967 0,17894 0,34374 -0,02315 -0,36689

Peak distance correla�on (max) 0,77199 0,78084 0,41216 0,96472 0,55256 0,738115 0,745724 0,261317 1 0,738683 0,03388 0,03512 0,15084 -0,03528 -0,18612

Peak distance correla�on (min) 0,72248 0,75949 0,37800 0,99380 0,61580 0,714219 0,726407 0,277852 1 0,722148 0,00826 0,03308 0,10015 -0,00620 -0,10634

0430792,069532,1834698,025933,0-654774,0250414,0noitalerroc TFF ,313631 -0,646946 1 1,646946 0,11702 0,16383 0,30743 -0,10356 -0,41099

Velocity correla�on 0,67770 0,84542 -0,92062 0,98516 1,90577 0,435769 0,572761 -0,912589 0,994604 1,907193 0,24193 0,27266 -0,00803 -0,00945 -0,00142

Distance correla�on 0,98063 0,98964 0,88940 0,99932 0,10992 0,972771 0,980998 0,698178 0,999983 0,301805 0,00786 0,00864 0,19122 -0,00066 -0,19188

y

mean median minimum maximum range mean median minimum maximum range mean median minimum maximum range

Normalized correla�on 0,40200 0,46131 -0,55365 0,88695 1,44061 0,257587 0,277322 -0,583522 0,872625 1,456147 0,14441 0,18399 0,02987 0,01433 -0,01554

Pearson correla�on 0,44474 0,47060 -0,13670 0,85921 0,99591 0,248495 0,248937 -0,438697 0,840955 1,279652 0,19624 0,22166 0,30199 0,01825 -0,28374

Peak distance correla�on (max) 0,76530 0,78273 0,45391 0,97404 0,52013 0,754447 0,769944 0,217751 1 0,782249 0,01085 0,01279 0,23616 -0,02596 -0,26212

Peak distance correla�on (min) 0,80742 0,82494 0,38982 0,98888 0,59906 0,790825 0,804216 0,27516 1 0,72484 0,01659 0,02072 0,11466 -0,01112 -0,12578

0377881,018555,1180239,0627326,0-60434,0356204,0noitalerroc TFF ,193882 -0,766831 1 1,766831 0,21388 0,24018 0,14311 -0,06792 -0,21102

Velocity correla�on 0,83381 0,92906 -0,22399 0,99169 1,21568 0,630534 0,797856 -0,954481 0,999553 1,954034 0,20328 0,13121 0,73049 -0,00786 -0,73835

Distance correla�on 0,98385 0,99249 0,89211 0,99976 0,10765 0,970026 0,980024 0,820834 0,999965 0,179131 0,01382 0,01247 0,07128 -0,00020 -0,07148

z

mean median minimum maximum range mean median minimum maximum range mean median minimum maximum range

Normalized correla�on 0,55587 0,61638 -0,63343 0,88332 1,51675 0,493772 0,523452 -0,583272 0,908246 1,491518 0,06210 0,09293 -0,05016 -0,02493 0,02523

Pearson correla�on 0,21854 0,26286 -0,63349 0,74543 1,37892 0,119658 0,09706 -0,720984 0,808239 1,529223 0,09889 0,16580 0,08750 -0,06281 -0,15031

Peak distance correla�on (max) 0,71587 0,71459 0,38775 0,99639 0,60864 0,726116 0,736489 0,238498 1 0,761502 -0,01025 -0,02190 0,14925 -0,00361 -0,15286

Peak distance correla�on (min) 0,73998 0,76766 0,44481 0,97188 0,52707 0,731641 0,748516 0,257193 1 0,742807 0,00834 0,01914 0,18762 -0,02812 -0,21574

855512,037073,1372888,0454284,0-793883,0102963,0noitalerroc TFF 0,224855 -0,781461 1 1,781461 0,15364 0,16354 0,29901 -0,11173 -0,41073

Velocity correla�on -0,21808 -0,32365 -0,97536 0,93571 1,91107 -0,024236 -0,056819 -0,983042 0,99442 1,977462 -0,19385 -0,26683 0,00768 -0,05871 -0,06640

Distance correla�on 0,96665 0,97639 0,83377 0,99942 0,16566 0,96533 0,975576 0,699472 0,999993 0,300521 0,00132 0,00081 0,13430 -0,00057 -0,13486

vxyz

mean median minimum maximum range mean median minimum maximum range mean median minimum maximum range

Normalized correla�on 0,93383 0,94242 0,71463 0,98463 0,27000 0,876603 0,881453 0,680539 0,979488 0,298949 0,05722 0,06097 0,03409 0,00514 -0,02895

Pearson correla�on 0,61114 0,65142 -0,11560 0,87340 0,98900 0,305765 0,320428 -0,242835 0,835074 1,077909 0,30538 0,33099 0,12724 0,03832 -0,08891

Peak distance correla�on (max) 0,84698 0,85828 0,65745 0,97616 0,31871 0,815745 0,823079 0,523276 1 0,476724 0,03124 0,03520 0,13417 -0,02384 -0,15802

Peak distance correla�on (min) 0,81084 0,85221 0,43217 0,99993 0,56776 0,720804 0,721741 0,255935 1 0,744065 0,09003 0,13047 0,17624 -0,00007 -0,17631

,022133,076477,0968469,0102091,0405937,0397886,0noitalerroc TFF 344966 -0,448664 1 1,448664 0,35757 0,39454 0,63887 -0,03513 -0,67400

Velocity correla�on 0,85031 0,94265 -0,36458 0,99556 1,36014 0,564333 0,704949 -0,861944 0,999052 1,860996 0,28598 0,23771 0,49737 -0,00349 -0,50086

Distance correla�on 0,99250 0,99754 0,90467 0,99988 0,09522 0,985176 0,990201 0,832484 0,999993 0,167509 0,00733 0,00734 0,07218 -0,00011 -0,07229

vxy

mean median minimum maximum range mean median minimum maximum range mean median minimum maximum range

Normalized correla�on 0,90013 0,90827 0,72646 0,96862 0,24216 0,857088 0,863238 0,475006 0,977376 0,50237 0,04304 0,04503 0,25145 -0,00876 -0,26021

Pearson correla�on 0,42378 0,48921 -0,14944 0,75778 0,90722 0,205514 0,202886 -0,451292 0,841953 1,293245 0,21827 0,28633 0,30185 -0,08417 -0,38602

Peak distance correla�on (max) 0,78686 0,81566 0,31592 0,96641 0,65049 0,774005 0,795103 0,292447 1 0,707553 0,01286 0,02056 0,02347 -0,03359 -0,05707

Peak distance correla�on (min) 0,75168 0,77013 0,32645 0,99811 0,67166 0,687105 0,705866 0,228324 1 0,771676 0,06457 0,06426 0,09812 -0,00189 -0,10001

232582,016610,1487149,0628470,0-769306,0796345,0noitalerroc TFF 0,294669 -0,50999 1 1,50999 0,25847 0,30930 0,43516 -0,05822 -0,49338

Velocity correla�on 0,40966 0,57056 -0,84741 0,99473 1,84214 0,201697 0,244721 -0,965696 0,998208 1,963904 0,20796 0,32584 0,11829 -0,00348 -0,12176

Distance correla�on 0,97962 0,98551 0,86250 0,99950 0,13700 0,97597 0,982442 0,808649 0,999969 0,19132 0,00365 0,00307 0,05385 -0,00047 -0,05432

vxz

mean median minimum maximum range mean median minimum maximum range mean median minimum maximum range

Normalized correla�on 0,91737 0,92495 0,68656 0,97844 0,29188 0,874579 0,879965 0,68376 0,980213 0,296453 0,04279 0,04498 0,00280 -0,00178 -0,00458

Pearson correla�on 0,46927 0,48474 -0,10246 0,85195 0,95441 0,207963 0,193199 -0,473892 0,835124 1,309016 0,26131 0,29155 0,37143 0,01682 -0,35461

Peak distance correla�on (max) 0,76179 0,80339 0,42277 0,98098 0,55820 0,737359 0,760011 0,263624 1 0,736376 0,02443 0,04338 0,15915 -0,01902 -0,17817

Peak distance correla�on (min) 0,71891 0,73185 0,30249 0,99789 0,69540 0,659774 0,668367 0,200172 1 0,799828 0,05913 0,06348 0,10232 -0,00211 -0,10443

0704233,085788,0484939,0409150,0111426,0550975,0noitalerroc TFF ,354432 -0,496686 1 1,496686 0,24665 0,26968 0,54859 -0,06052 -0,60911

Velocity correla�on 0,37953 0,43449 -0,72192 0,98785 1,70976 0,129558 0,134738 -0,968916 0,999185 1,968101 0,24997 0,29975 0,24700 -0,01134 -0,25834

Distance correla�on 0,97518 0,98411 0,87556 0,99971 0,12415 0,974414 0,981396 0,78408 0,999992 0,215912 0,00077 0,00271 0,09148 -0,00029 -0,09176

vyz

mean median minimum maximum range mean median minimum maximum range mean median minimum maximum range

Normalized correla�on 0,87185 0,88600 0,49173 0,95430 0,46257 0,779526 0,793887 0,354421 0,957959 0,603538 0,09232 0,09211 0,13731 -0,00366 -0,14097

Pearson correla�on 0,61975 0,65926 -0,20594 0,88719 1,09312 0,361045 0,404451 -0,393409 0,89179 1,285199 0,25870 0,25481 0,18747 -0,00460 -0,19208

Peak distance correla�on (max) 0,81692 0,82940 0,54024 0,99026 0,45002 0,79632 0,809865 0,405101 1 0,594899 0,02060 0,01953 0,13514 -0,00974 -0,14488

Peak distance correla�on (min) 0,80984 0,82709 0,42319 0,99131 0,56811 0,768891 0,772755 0,271791 1 0,728209 0,04095 0,05434 0,15140 -0,00869 -0,16009

3,0884243,018877,0634749,036861,0558496,020276,0noitalerroc TFF 56404 -0,500056 1 1,500056 0,32953 0,33845 0,66869 -0,05256 -0,72125

Velocity correla�on 0,86867 0,95083 -0,59480 0,99445 1,58925 0,662951 0,843314 -0,924647 0,999018 1,923665 0,20572 0,10751 0,32985 -0,00457 -0,33442

Distance correla�on 0,98488 0,99437 0,89280 0,99988 0,10708 0,975766 0,984961 0,782699 0,999993 0,217294 0,00911 0,00941 0,11010 -0,00011 -0,11021

Figure A.1: Metrics for the similarity test distributions ordered by signal and group.
The data was recorded with a sensor located on the finger.
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A.2 Similarity test metrics - wrist sensor

0108 = natad lortnoc ,tsirW09 = natad lamron ,tsirWtset deilppA Differences: Wrist, normal - control

x

mean median minimum maximum range mean median minimum maximum range mean median minimum maximum range

Normalized correla�on 0,84885 0,89342 0,29877 0,97728 0,67851 0,790205 0,814937 0,06853 0,98794 0,91941 0,05865 0,07848 0,23024 -0,01066 -0,24090

Pearson correla�on 0,53086 0,57117 -0,17543 0,93613 1,11155 0,322975 0,349457 -0,608019 0,941402 1,549421 0,20788 0,22171 0,43259 -0,00527 -0,43787

Peak distance correla�on (max) 0,69698 0,71032 0,17370 0,99097 0,81727 0,66033 0,656518 0,168235 1 0,831765 0,03665 0,05380 0,00546 -0,00903 -0,01449

Peak distance correla�on (min) 0,83115 0,88558 0,25646 0,99887 0,74242 0,783355 0,813196 0,15757 1 0,84243 0,04780 0,07238 0,09889 -0,00113 -0,10001

128524,078741,1391459,0186391,0-921046,0973975,0noitalerroc TFF 0,462593 -0,750832 1 1,750832 0,15356 0,17754 0,55715 -0,04581 -0,60296

Velocity correla�on 0,90660 0,96797 -0,16581 0,99735 1,16316 0,621792 0,797498 -0,975782 0,999694 1,975476 0,28481 0,17047 0,80998 -0,00234 -0,81232

Distance correla�on 0,99265 0,99680 0,89526 0,99991 0,10465 0,978719 0,984546 0,82277 0,999972 0,177202 0,01393 0,01226 0,07249 -0,00006 -0,07255

y

mean median minimum maximum range mean median minimum maximum range mean median minimum maximum range

Normalized correla�on 0,77578 0,82535 0,20186 0,95452 0,75266 0,619997 0,639431 -0,182747 0,965772 1,148519 0,15578 0,18592 0,38461 -0,01125 -0,39586

Pearson correla�on 0,58868 0,68588 -0,01792 0,87806 0,89598 0,297146 0,297556 -0,509878 0,925667 1,435545 0,29153 0,38833 0,49195 -0,04761 -0,53956

Peak distance correla�on (max) 0,79445 0,81669 0,39458 0,97805 0,58347 0,749894 0,762974 0,261057 1 0,738943 0,04455 0,05372 0,13353 -0,02195 -0,15547

Peak distance correla�on (min) 0,84930 0,88087 0,40816 0,99157 0,58341 0,813365 0,827428 0,248656 1 0,751344 0,03593 0,05344 0,15950 -0,00843 -0,16794

398973,025503,1452679,0262923,0-763557,0843846,0noitalerroc TFF 0,430115 -0,792087 1 1,792087 0,26846 0,32525 0,46283 -0,02375 -0,48657

Velocity correla�on 0,89483 0,95795 -0,13648 0,99566 1,13214 0,663189 0,823101 -0,969526 0,999286 1,968812 0,23164 0,13485 0,83305 -0,00362 -0,83667

Distance correla�on 0,98731 0,99533 0,87579 0,99986 0,12408 0,969876 0,979773 0,780593 0,99994 0,219347 0,01743 0,01556 0,09520 -0,00008 -0,09527

z

mean median minimum maximum range mean median minimum maximum range mean median minimum maximum range

Normalized correla�on -0,05305 -0,03012 -0,79559 0,67333 1,46892 0,061195 0,071914 -0,872071 0,834102 1,706173 -0,11425 -0,10203 0,07648 -0,16077 -0,23725

Pearson correla�on -0,07565 -0,05393 -0,66652 0,66107 1,32759 0,006501 0,006248 -0,729764 0,833034 1,562798 -0,08215 -0,06018 0,06324 -0,17197 -0,23521

Peak distance correla�on (max) 0,69450 0,68709 0,29289 0,98196 0,68907 0,708179 0,729316 0,209183 1 0,790817 -0,01368 -0,04222 0,08371 -0,01804 -0,10175

Peak distance correla�on (min) 0,72495 0,73064 0,35892 0,96602 0,60711 0,732958 0,749721 0,18369 1 0,81631 -0,00801 -0,01908 0,17523 -0,03398 -0,20920

111231,084444,1733509,0741935,0-664642,0564052,0noitalerroc TFF 0,134129 -0,781945 1 1,781945 0,11835 0,11234 0,24280 -0,09466 -0,33746

Velocity correla�on -0,11021 -0,23364 -0,95545 0,93509 1,89055 0,014347 0,014758 -0,990065 0,998578 1,988643 -0,12456 -0,24840 0,03461 -0,06348 -0,09810

Distance correla�on 0,96619 0,97863 0,84673 0,99882 0,15209 0,966544 0,975106 0,760179 0,999968 0,239789 -0,00035 0,00353 0,08655 -0,00114 -0,08770

vxyz

mean median minimum maximum range mean median minimum maximum range mean median minimum maximum range

Normalized correla�on 0,93964 0,95268 0,72190 0,98883 0,26693 0,894015 0,899173 0,704996 0,988992 0,283996 0,04562 0,05350 0,01690 -0,00017 -0,01707

Pearson correla�on 0,55777 0,60338 -0,11454 0,88357 0,99812 0,253115 0,25425 -0,332306 0,895919 1,228225 0,30466 0,34913 0,21776 -0,01235 -0,23011

Peak distance correla�on (max) 0,84161 0,84745 0,62976 0,99235 0,36259 0,817636 0,827163 0,354162 1 0,645838 0,02398 0,02029 0,27559 -0,00765 -0,28325

Peak distance correla�on (min) 0,78736 0,79676 0,21697 0,99878 0,78180 0,690746 0,68783 0,211657 1 0,788343 0,09661 0,10893 0,00532 -0,00122 -0,00654

0426023,023179,077969,0545100,0-498217,0511866,0noitalerroc TFF ,33188 -0,546321 1 1,546321 0,34749 0,38101 0,54478 -0,03023 -0,57501

Velocity correla�on 0,80686 0,92256 -0,32340 0,99505 1,31844 0,425099 0,493389 -0,812164 0,998658 1,810822 0,38176 0,42917 0,48877 -0,00361 -0,49238

Distance correla�on 0,99476 0,99761 0,96944 0,99988 0,03044 0,986602 0,991132 0,855641 0,999993 0,144352 0,00816 0,00648 0,11380 -0,00011 -0,11391

vxy

mean median minimum maximum range mean median minimum maximum range mean median minimum maximum range

Normalized correla�on 0,93337 0,94108 0,72668 0,98397 0,25729 0,890342 0,895621 0,708532 0,985044 0,276512 0,04303 0,04546 0,01815 -0,00107 -0,01922

Pearson correla�on 0,51695 0,56433 -0,10316 0,82998 0,93314 0,228363 0,222141 -0,331075 0,885479 1,216554 0,28858 0,34219 0,22791 -0,05550 -0,28341

Peak distance correla�on (max) 0,81209 0,83346 0,45633 0,98064 0,52431 0,791401 0,810476 0,342523 1 0,657477 0,02069 0,02298 0,11381 -0,01936 -0,13317

Peak distance correla�on (min) 0,75996 0,79209 0,21697 0,99721 0,78023 0,677155 0,67655 0,171589 1 0,828411 0,08280 0,11554 0,04539 -0,00279 -0,04818

,0533203,026399,072449,053940,0-424996,0453136,0noitalerroc TFF 315888 -0,569324 1 1,569324 0,32902 0,38354 0,51997 -0,05573 -0,57570

Velocity correla�on 0,66431 0,81819 -0,48144 0,99248 1,47392 0,290116 0,330864 -0,907791 0,998338 1,906129 0,37420 0,48732 0,42635 -0,00586 -0,43221

Distance correla�on 0,98943 0,99536 0,89771 0,99988 0,10217 0,981241 0,98878 0,78799 0,999992 0,212002 0,00818 0,00658 0,10972 -0,00011 -0,10983

vxz

mean median minimum maximum range mean median minimum maximum range mean median minimum maximum range

Normalized correla�on 0,92700 0,93907 0,68825 0,98373 0,29548 0,881825 0,885496 0,610051 0,990515 0,380464 0,04517 0,05358 0,07820 -0,00679 -0,08499

Pearson correla�on 0,50183 0,50911 -0,33179 0,93309 1,26487 0,200234 0,184259 -0,515486 0,920662 1,436148 0,30160 0,32485 0,18370 0,01243 -0,17127

Peak distance correla�on (max) 0,78741 0,84302 0,35414 0,99168 0,63754 0,719479 0,744732 0,140979 1 0,859021 0,06794 0,09829 0,21316 -0,00832 -0,22148

Peak distance correla�on (min) 0,73607 0,75352 0,17619 0,99653 0,82034 0,698095 0,712833 0,107957 1 0,892043 0,03798 0,04068 0,06824 -0,00347 -0,07170

923824,085689,0692239,0382450,0-755336,0721716,0noitalerroc TFF 0,447839 -0,521871 1 1,521871 0,18880 0,18572 0,46759 -0,06770 -0,53529

Velocity correla�on 0,66939 0,81965 -0,80185 0,99796 1,79981 0,358701 0,445919 -0,972431 0,999608 1,972039 0,31068 0,37373 0,17058 -0,00165 -0,17223

Distance correla�on 0,97787 0,98904 0,85018 0,99988 0,14970 0,970301 0,978314 0,755198 0,999979 0,244781 0,00757 0,01073 0,09498 -0,00010 -0,09508

vyz

mean median minimum maximum range mean median minimum maximum range mean median minimum maximum range

Normalized correla�on 0,87698 0,89262 0,50240 0,96219 0,45979 0,785968 0,804069 0,284204 0,977098 0,692894 0,09101 0,08855 0,21819 -0,01491 -0,23310

Pearson correla�on 0,67214 0,72439 -0,06500 0,89429 0,95929 0,414866 0,467277 -0,502689 0,938565 1,441254 0,25727 0,25711 0,43769 -0,04427 -0,48196

Peak distance correla�on (max) 0,80280 0,80702 0,50767 0,98089 0,47321 0,749151 0,762555 0,312407 1 0,687593 0,05365 0,04447 0,19527 -0,01911 -0,21438

Peak distance correla�on (min) 0,83579 0,85347 0,43646 0,99406 0,55760 0,799439 0,808592 0,336327 1 0,663673 0,03635 0,04487 0,10013 -0,00594 -0,10607

232703,075279,0686639,0388530,0-849766,0272626,0noitalerroc TFF 0,309677 -0,513562 1 1,513562 0,31904 0,35827 0,47768 -0,06331 -0,54099

Velocity correla�on 0,92797 0,98353 -0,16660 0,99674 1,16334 0,689889 0,862011 -0,966711 0,999639 1,96635 0,23808 0,12152 0,80011 -0,00290 -0,80301

Distance correla�on 0,99246 0,99728 0,86597 0,99993 0,13396 0,972794 0,985036 0,696198 0,999959 0,303761 0,01966 0,01225 0,16977 -0,00003 -0,16980

Figure A.2: Metrics for the similarity test distributions ordered by signal and group.
The data was recorded with a sensor located on the wrist.
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A Appendix

A.3 Results of the Shapiro-Wilk test

Figure A.3: Results for the Shapiro-Wilk test ordered by signal and similarity test.

50



A Appendix

A.4 Results of the Wilcoxon signed-rank test

Figure A.4: Results for the Wilcoxon signed-rank test ordered by signal and similarity test.
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